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Optogenetic tools can be used to manipulate neuronal activity

in a reversible and specific manner. In recent years, such

methods have been applied to uncover causal relationships

between activity in specified neuronal circuits and behavior in

the larval zebrafish. In this small, transparent, genetic model

organism, noninvasive manipulation and monitoring of

neuronal activity with light is possible throughout the nervous

system. Here we review recent work in which these new tools

have been applied to zebrafish, and discuss some of the

existing challenges of these approaches.
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Introduction
Understanding how neuronal circuits generate behavior is

a critical yet complex endeavor. The circuits involved

typically span multiple brain regions, which may be

spatially distributed and difficult to access. The recent

field of optogenetics relies on a set of tools that are well

suited for simultaneously monitoring neural activity in

large populations of neurons and causally testing their

role by modifying their electrical properties and perturb-

ing their spiking patterns. The use of light both for

imaging and manipulation facilitates non-invasive access

following the expression of transgene-derived proteins

that either emit photons (such as fluorescent or biolumi-

nescent reporters of activity) or are sensitive to light (such

as light-gated channels or pumps).

The larval zebrafish is gaining prominence as a model

organism within systems neuroscience. It is relatively

small (about 4 mm long), translucent and amenable to
www.sciencedirect.com 
genetic modifications. Zebrafish have an archetypal

vertebrate brain plan [1] and exhibit a wide range of

simple but reliable behaviors. These include a diversity

of spontaneous locomotor maneuvers, such as slow for-

ward swims and routine turns [2] and reflex-like

responses, such as touch mediated escape responses

[2–4]. Zebrafish larvae also exhibit a variety of visually

driven behavior [5] such as the optokinetic response

(OKR) where objects moving across the visual field evoke

stereotyped tracking eye movements [6], the optomotor

response (OMR) where larvae turn and swim in the

direction of perceived whole-field visual motion [7], prey

tracking and capture [8–11], as well as associative learning

[12], and motor adaptation, where the larvae adapt their

locomotor output to compensate for changes in the

amount of visual feedback they receive while performing

a forward swim [13,14��].

In this review we will discuss recent work in which

optogenetic approaches have been applied in larval zeb-

rafish to explore the neural basis of behavior. Optoge-

netics not only allows us to monitor neural activity but

also to perform loss-of-function and gain-of-function

experiments to test the necessity and sufficiency, respect-

ively, of neural activity to elicit specific behavior.

Probing neural circuits with light-induced
neuronal excitation
Channelrhodopsin-2 (ChR2) [15] is a light-gated channel

that, upon absorption of blue light, allows the non-specific

flow of cations into cells. When expressed in the nervous

system, it can be used to depolarize neurons (Na+ ions are

conducted twice as efficiently as K+ ions) and control their

firing with high temporal precision [16,17��,18]. In zebra-

fish, ChR2 was first used in the somatosensory system of 1

day post fertilization (dpf) embryos [19�]. Transient

mosaic expression of ChR2 was driven by the islet-1
promoter from plasmids injected at the one-cell stage

resulting in expression in trigeminal and Rohon-Beard

neurons. It was shown that photo-activating these geneti-

cally defined populations of neurons could trigger an

escape response. Furthermore, a single action potential

in one sensory neuron was sufficient to evoke escape

behavior (Figure 1a).

Targeting optogenetic tools to neuronal subpopulations

was subsequently facilitated by the isolation of transgenic

driver lines from Gal4 enhancer trap screens [20�,21�]. A

variety of these transgenic lines have been used to loca-

lize expression of the light-gated ionotropic glutamate
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Using optogenetic tools to test the sufficiency and necessity of neurons in generating different types of motor output. (a) An embryo expressing ChR2

in somatosensory neurons under the isl1 promoter responds to neuronal stimulation by a blue light flash (adapted with permission from [19�]). Bottom:

A 5 ms blue light pulse typically elicits a single spike. In some of the cases, a single spike in a single Rohon-Beard cell was sufficient to generate an

escape response. (b) Mapping brain regions necessary for saccade generation using yellow-light activation of NpHR (adapted with permission from

[30]). The ratio between saccade number in expressing versus non-expressing larvae decreases when light hits a certain part of the hindbrain,

suggesting that it is necessary for saccade generation. Bottom: Eye position during left and right motion during suppression of neuronal activity in

different areas. Behavior could be bilaterally or unilaterally affected depending on where NpHR was activated.
receptor LiGluR [22,23] — combined with an exogenous

co-factor, MAG, to depolarize neurons — within the

spinal cord of 5 dpf larvae [24��]. This intersectional gene

expression approach helped identify a particular type of

neuron, the Kolmer-Agduhr (KA) cells, whose photo-

stimulation was sufficient to induce a slow forward swim

[24��]. Upon massive stimulation, the KA neurons can

modulate ventral spinal circuits comprising the central

pattern generators for locomotion in the larval zebrafish.

Optically silencing neural activity
Both ChR2 and halorhodopsin (NpHR) [25–28] have

been used to investigate the initiation of locomotion in

larvae [29]. NpHR is a light-driven chloride pump that

allows reversible silencing of neurons and functionally has

the opposite effect of ChR2. The authors used enhancer

trap lines to generate transgenic larvae expressing NpHR

in most of the neurons and observed that swimming was

inhibited by widespread NpHR stimulation and was

triggered when this inhibition was released. NpHR

stimulation was focalized to regions of �30 mm using

an optic fiber. This allowed the identification of the

neuroanatomical region responsible for the induction of

the rebound locomotion: the commissura infima Halleri,
which is located at the boundary between the hindbrain

and the spinal cord. By co-expressing ChR2 and NpHR in

the same neurons, it was shown that activating them led to
Current Opinion in Neurobiology 2013, 23:119–126 
swim initiation and silencing them led to larvae terminat-

ing swimming.

The same strategy was used to identify brain regions

associated with an oculomotor behavior, the fast resetting

saccades of the OKR [30]. Silencing activity by localized

stimulation of NpHR in a subregion of rhombomere 5 was

enough to abolish saccades (Figure 1b). In addition, the

authors were able to perform a gain of function exper-

iment by expressing ChR2 in the relevant neurons in the

double indemnity (didy) mutant. This mutant was origin-

ally identified by its inability to perform saccades during

the OKR, but saccades could be evoked by blue light

stimulation of ChR2. Silencing neuronal activity in these

same larvae in a slightly more caudal region around

rhombomeres 7/8 was enough to decrease gaze stability,

suggesting that the neural integrator for eye position

resides in this area [31�].

Restricting activation to subpopulations of
neurons with genetics and light patterning
Several of the experiments mentioned above took

advantage of the diversity of Gal4 enhancer trap lines

generated by large screens from the Baier and Kawakami

laboratories [21�,32] and the high expression levels

obtained with the Gal4/UAS transcriptional regulatory

system. A different approach, based on the Tet system
www.sciencedirect.com
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[33,34], was successfully implemented [35] to generate

transgenic lines with strong, stable expression in a sparse

subset of the neurons targeted by the promoter driving

the Tet activator (elavl3 (HuC) and Dlx4/6 were used in

this study). This system has the additional feature that

expression can be regulated pharmacologically by admin-

istering doxycycline. Larvae expressing ChR2 under Tet

control were stimulated with blue light [35], which

evoked distinct swimming behavior.

Studies in the olfactory bulb have been carried out using

adult zebrafish brain explants. In an elegant study where

light patterns were controlled spatially and temporally

using digital mirror devices [36��], a transgenic line

expressing ChR2 in sensory afferents was used to stimu-

late inputs to the bulb. The authors studied coding of

olfactory responses between mitral cells and the dorsal

telencephalon, and thereby demonstrated a role for spike

timing in the coding of stimuli throughout the olfactory

pathway.

A different transgenic line expressing ChR2 at high levels

in interneurons of the glomerular layer was used in [37] to

show that these cells release both GABA and dopamine.

While short trains of blue light evoked only GABA-

mediated inhibitory currents in mitral cells, more pro-

longed trains also activated a slow hyperpolarizing dopa-

mine-mediated current. The results suggest that GABA is

involved in dynamic odor processing, whereas dopamine

is implicated in the slow adaptation of circuit function,

such as filtering out slow variations in background odors

while retaining sensitivity to novel ones.

In the above studies, photostimulation of the light-gated

channel or pump was carried out in different ways using

combinations of light patterning [38,39��], and genetic

targeting of the light-gated channels [19�,24��,36��]. In

one case a blue spot of 50 mm diameter was generated

using an iris in the epifluorescence path [19�]. In other

studies, a small optic fiber further reduced the diameter of

the illumination spot to 30 mm [29,30]. Friedrich and

colleagues achieved complex non-synchronous stimu-

lation of mitral cells using digital mirror devices [36��].
This approach allows millisecond switching of two-

dimensional illumination patterns. However, none of

these methods of illumination allow restriction in the

z-direction [29].

Whether the intent is to excite or inhibit populations of

neurons, challenges remain in targeting light quickly,

precisely, and in three dimensions. Single photon illumi-

nation tends to activate groups of neurons unless the

targeted neurons are sparse or spread in a 2D plane. In

order to specifically activate single cells and reduce

scattering of stimulation light, multi-photon techniques

would be ideal, with the added benefit of interfering less

with the visual system. Two-photon excitation of ChR2
www.sciencedirect.com 
was first achieved in cultured neurons in [40��] and

successfully implemented in an adult zebrafish brain

explant [35]. If successful, in vivo multi-photon excitation

could provide relatively fast (tens of milliseconds) acti-

vation of neurons distributed across a large field of view

within a restricted resolution in z, temporally limited only

by the spiral scan time over a soma. There are no reports

of two-photon activation of light-gated pumps silencing

neurons.

The combination of temporal focusing and digital holo-

graphy [38,39��,41] permits multi-photon activation of

larger groups of selected neurons in the single millisecond

time range. Temporal focusing greatly improves axial

resolution in the excitation pattern, and can be used in

combination with other techniques. Digital holography

utilizes iterative algorithms and a liquid crystal spatial

light modulator (LC-SLM) to modulate the input beam’s

wavefront, eventually producing the desired, often com-

plicated, patterns of light (both topics are reviewed in [42]).

These new techniques improve temporal resolution and

allow the simultaneous imaging of neuronal activity and

3D optical stimulation in different planes [43]. Improve-

ments of devices for 3D spatiotemporal delivery of light

will be very useful for the optogenetically mediated

activation of defined groups of neurons in zebrafish.

Calibration
A current challenge when using optogenetic tools

involves calibrating the system to understand what effect

a given light intensity has on the membrane potential of a

neuron. This is important to ensure reproducibility of the

stimulus across both neurons and larvae. Theoretically,

this would involve integrating the local power density of

the light and knowing the expression levels of the opto-

genetic effector at the soma. In practice it may be possible

to calibrate these tools using electrophysiology, although

doing so across a population of neurons is not feasible.

Another possibility is to co-express genetically encoded

voltage sensors [44�,45] and use them to estimate the

light-induced effects at the population level.

Imaging neuronal activity with genetically
encoded calcium indicators
Fetcho and colleagues were the first to demonstrate the

possibility of monitoring neuronal activity in zebrafish

with the genetically encoded calcium indicator (GECI),

cameleon, by imaging motor neurons, spinal interneurons

and Rohon-Beard cells in intact zebrafish [46]. These

cells were shown to respond to touch and electric stimu-

lation. Since this first in vivo demonstration, the use of

GECIs has been extended to circuits involved in several

behavioral paradigms [14��,36��,37,47��,48,49].

The optic tectum (OT, homologue of the mammalian

superior colliculus) is a layered structure, which in larval

zebrafish is involved in the tracking of small, visual
Current Opinion in Neurobiology 2013, 23:119–126
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stimuli and contributes to prey capture [8], a complex

feeding behavior. How does the OT select small prey-like

stimuli over larger ones? This question was addressed

using two versions of the GCaMP family of indicators

(GCaMP1.6 and GCaMP3) and transgenic lines ident-

ified in [21�], to determine the receptive fields of the

superficial and deep layers of the OT to large and small

visual stimuli [47��]. Deep tectal layers constitute the

output of the tectum and project to pre-motor areas.

Excitatory neurons in deep layers receive active retinal

inputs when both small and large visual stimuli are

presented. On the other hand, superficial inhibitory

neurons are preferentially activated by large visual stimuli

and this inhibition is fed-forward to the deeper layers.

This circuit may silence the output of the OT when large

visual stimuli are presented and thereby allow it to pre-

ferentially select small moving stimuli over large ones.

Consistent with this hypothesis, larvae in which super-

ficial inhibitory neurons were silenced using the tetanus

toxin light chain were less effective at catching small

prey.

In the described experiments, the sensitivity of detection

relies on the affinity and kinetics of the calcium indicator

used. Guided by the protein structure of the original

GCaMP indicator, targeted mutagenesis and high-

throughput screening have led to great improvements

in recent years [50]. The latest variant is GCaMP5 [51], a

new indicator with increased dynamic range. GCaMP5

shows a 2-fold to 4-fold improvement (Figure 2) com-

pared to GCaMP2 [52] or GCaMP3 [53] in a variety of

experiments involving both transient and stable
Figure 2
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Comparison of sensitivity of GCaMP indicators in zebrafish larvae. The same

three GCaMP indicators — GCaMP2, 3 or 5 (specifically GCaMP5G) — unde
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expressions in zebrafish larvae. The high sensitivity

and signal to noise ratio allow identification of a compara-

tively larger number of active cells in experiments invol-

ving single trial analysis. The continuous improvement of

both green and red GECIs [51,54�] raises the hope that

calculations of neuronal spiking may be possible across a

wide range of firing rates in the future.

Recording activity with bioluminescence
Recording of neuronal activity in freely moving animals

has a rich history in rats [55] and other animals, and has

the obvious advantage of capturing neuronal activity

while the test subject is in its natural state. A recent

technique permits completely non-invasive neural

recordings in freely swimming zebrafish by expressing

the protein GFP-Aequorin [56�] in targeted populations

of neurons (Figure 3a). The GFP-Aequorin protein is

bioluminescent, and (after larvae are bathed in coelenter-

azine) emits green photons when it binds to calcium,

which, due to the transparency of the larva, can be

detected with photosensitive devices. Aequorin was tar-

geted to hypocretin-expressing neurons of the hypothala-

mus and neuronal discharge was elevated during periods

of increased locomotion [57��]. Since current techniques

only allow for the monitoring of gross population activity,

it will be useful to combine this neuroluminescence

technique with targeting of specific subsets of neurons

using novel genetic methods [32,35,58��,59].

Imaging activity during virtual behavior
A new approach for monitoring neuronal activity using

GECIs has recently been developed in zebrafish larvae
20 40
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Novel strategies for recording neural activity in populations of neurons in awake larvae during active or fictive locomotion. (a) The neuroluminescence

system (adapted with permission from [57��]). A zebrafish larva expressing GFP-Aequorin swims freely in a Petri dish. A photomultiplier tube above the

animal detects green photons that are emitted during raised activity levels in the target neurons, while a camera underneath the Petri dish films the

larva as it swims. In this way, behavior and neural activity can be monitored simultaneously in freely swimming larvae (right). (b) Fictive virtual-reality

system for recording whole-brain activity during behavior (adapted with permission from [14��]). A zebrafish larva was paralyzed and fictive motor

output registered via two electrodes attached to each side of the tail, recording from the motor nerve roots. The intended motor output was used to

simulate locomotion through a virtual environment, projected underneath the larva. In this way, recordings from large populations can be recorded at

once during closed-loop behavior.
behaving in a virtual reality environment [14��]
(Figure 3b). Inspired by virtual reality systems for mice

[60] and fruit flies [61,62], this paradigm enables record-

ing of neuronal activity from all areas of the brain with

cellular resolution. A conventional two-photon micro-

scope images neuronal GECI fluorescence in a larva

immersed in a virtual environment. The larva is paralyzed

with a-bungarotoxin, thereby yielding the brain comple-

tely stationary. Large electrodes record neuronal activity

(through the skin) from the bundle of motor neuron axons

in the nerve root along the tail [63,64]. By analyzing these

nerve root signals, it is possible to estimate the corre-

sponding motor output. The intended locomotion is used

in turn to drive movement in the virtual environment, and

has been used to study whole-brain activity during a

simple form of motor learning [13,14��]. When changing

the strength of visual feedback following an intended

swimming event, the animals respond by compensatory

adjustments of their locomotor drive. GCaMP2 was

expressed throughout the brain to investigate the

neuronal activity patterns underlying this response

[14��] (using the pan-neuronal elavl3 (HuC) promoter

[46,65]). Calcium imaging in sequential planes through

the entire brain volume revealed that activity was particu-

larly concentrated in the olivo-cerebellar system. Lesions

of the inferior olive reduced the ability of the larva to

perform simple forms of motor learning. This study raises

many questions about the mechanisms by which sensor-

imotor integration leads to changes in behavior and paves
www.sciencedirect.com 
the way toward recording whole-brain neuronal activity

during diverse behavioral responses.

Photoconvertible fluorescent proteins and the
interface between neuroscience and
development
Within the first week of life, zebrafish larvae exhibit

different locomotor patterns and by 5 dpf they can per-

form slow swims and feed. Fetcho and colleagues recently

observed that a well-defined structural and functional

ground-plan in the hindbrain is involved in the control

of swimming at different frequencies at the larval stage.

Groups of glutamatergic neurons, organized in sagittal

planes, discharge in synchrony with swim patterns

[66��,67��]. These neurons likely drive motor output.

Using chx10:Kaede transgenic animals [68], the fluorescent

protein Kaede can be photo-converted from green to red

at early stages of development. Thus, early differentiating

neurons contain more red (photo-converted) fluorescent

protein while the more recent differentiating cells contain

only green fluorescent protein. This analysis revealed that

dorsal interneurons were younger than ventral ones

(Figure 4). Ventral neurons were characterized as having

lower input resistances and were recruited at higher

swimming frequencies. These observations are consistent

with the development of swimming patterns from

embryonic to larval stages, and suggest that additional

circuitry from late-born neurons in the larva is responsible

for slow swimming locomotion. Studies combining
Current Opinion in Neurobiology 2013, 23:119–126
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Figure 4
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Estimation of the age of hindbrain neurons using the photoconvertible protein Kaede (adapted with permission from [66��]). (a) In an alx:Kaede line,

Kaede is photo-converted from green to red by UV illumination at two dpf and imaged at three dpf. Neurons that are born after two dpf only contain the

green original Kaede while neurons born before two dpf also contained red photo-converted Kaede. By changing the time of photo-conversion, the

age of hindbrain neurons could be estimated. Newly born neurons are added dorsally demonstrating a ventral-dorsal organization of the hindbrain. (b)

There is a ventral-dorsal ordering in recruitment of neurons during swimming at different frequencies. Ventral, older neurons are recruited during fast

swims, and dorsal, younger neurons during slow swims.
anatomy, electrophysiology and behavior illustrate how

multiple experimental approaches are critical for gaining

fundamental insights into the developing nervous system

underlying locomotion and other behavior.

Prospects
Optogenetic tools have developed quickly since neuronal

activity was first monitored in larval zebrafish using

calcium imaging [46]. The recent work we have reviewed

here shows that it is now possible to monitor activity in a

large number of neurons and perform loss-of-function and

gain-of-function experiments in vivo. In some of the cases

this allows us to directly link neuronal activity with

behavior. Yet most of the perturbations we have

described lack the specificity required to manipulate

single neuron activity at will and therefore do not provide

us with a fine enough scalpel to dissect circuitry with the

detail we would desire. We believe that future advances,

in particular on two fronts, will greatly aid this endeavor.

Firstly, our current knowledge of genetic tools that label

different populations of neurons is limited yet it is

important to be able to target expression of the optoge-

netic tool of choice to the specific cell type of interest.

Gal4 enhancer trap lines and the Tet activation system

have proved to be useful, but we expect that new tech-

nologies, such as the recently developed TALENs

[58��,69�] will allow better control in the future. Secondly,

we need to quickly activate cells located in different z-

planes, as dissecting circuit function requires the manip-

ulation of neuronal activity of both single and multiple

neurons. Even though the dynamic manipulation of

neuronal circuits seems difficult in freely moving animals,

the possibility of mimicking behavior in a virtual reality

environment should facilitate light delivery for perform-

ing optogenetic dissection of circuits underlying behavior.

Although exciting technique advancement such as digital

holography and temporal focusing continues to push the
Current Opinion in Neurobiology 2013, 23:119–126 
technical boundaries, limitations still exist. Further

developments in optics, combined with the ever-improv-

ing optogenetic toolbox [51,70], will open new paths of

investigation.
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